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Abstract  

This work is devoted to the study of the change in the functional form of the minus Dirac 
bracket under pure gauge transformations (in the sense of Levy-Leblond). We found a 
closed formula which expresses this change and we use it to discuss the relevance of a 
gauge transformation for the skew-symmetric (Bose-like) quantization procedure of 
constrained classical models. We found necessary conditions which are to be fulfilled if 
the gauge transformation is to induce a mere change of representation at the quantum 
level. It is shown, by considering a simple example, that these conditions can be violated. 
We conclude then that adding a total time derivative to the Lagrangian of a classical model 
can drastically change the physical properties of the quantized Bose-like counterpart. 
A similar result has been detected previously for two particular systems quantized through 
the symmetric (Fermi-like) rule of quantization. 

1. Introduction 

For  some impor tant  classical problems the ordinary canonical formalism 
fails because the canonical variables satisfy a certain number  o f  constraints. 
A detailed study of  the general features o f  these abnormal  systems (called 
in the following constrained systems) and of  the skew-symmetric (Bose- 
like) quantizat ion rule associated to them has been given by Dirac (1950, 
1951, 1958, 1964). t Dirac 's  procedure has been extended posteriorly by 
Franke and K~ilnay (1970) to cover the symmetric (Fermi-like) quantizat ion 
problem of  constrained classical models. In  both cases the most  interesting 
situation arises when an irreducible set o f  minus (respectively plus) second- 
class constraints exists: {0_} (resp. {0+)), These two are different subsets 

t Dirae's theory will be briefly reviewed below. 
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of the whole set of constraints the problem at hand may have and are 
characterized by the fact that the matrices whose elements are the brackets 
{0~ a, 0Tb}~ are not singular. In these later cases the quantization is postu- 
lated to be effected through the rulest 

4~{, }~* -~ [ ,  ]~ (1.1) 

where {, }~* are the minus (plus) Dirac brackets. Their explicit forms are: 

{F, G}~* = {F, G}~ - {F, 0~a}~ CZ~, {0~ b, G}_v (1.2) 

with 
C~b{O;  b, O;C}T. = 6,, c (1.3) 

In equation (1.1) 4- = i and 4+ is a parameter whose values have been 
discussed elsewhere (K~ilnay & Ruggeri, 1972). The rules (1.1) are intended 
to generalize the more usual ones 

~ { ,  }~ -+  [ ,  ]~ (1.4) 

valid for unconstrained systems. 
In a recent work (K~tlnay & Ruggeri, 1972) the authors have considered 

a classical model which corresponds via the rule (1.1) to the quantum 
Fermi systems. The quantization of that model has the following interesting 
peculiarities: (a) the quantum operators algebra is drastically changed by 
performing a particular gauge transformation,:~ i.e. by going from one 
Lagrangian to another which differs from the first one by a total time 
derivative; and (b) the model can also be quantized according to the skew- 
symmetric (Bose-like) rule and the problems connected with the symmetric 
case are not present.w All this suggests that we study the gauge-variance of 
the minus Dirac bracket under general conditions in order to detect the 
(eventual) relevance of this variance for the quantization of Bose-like 
systems. This is, thus, the main purpose of this work. 

A closed formula expressing the change of the functional form of {, }_* 
under arbitrary pure gauge transformations is found in Section 3. An 
important difference between the skew-symmetric and symmetric cases is 
also stated there. It is shown in Section 4 that, for sufficiently general 
models, essential changes in the formal structure of the quantized counter- 
parts of Bose-like systems can arise as a result of a gauge transformation. 
The ultimate reason is that such transformation is not canonical with respect 
to the minus Dirac bracket. With regard to the symmetric case, it is argued 
that the gauge-variance of the symmetric quantization rule is also related, 
in certain cases, to the non-canonicity of an arbitrary gauge transformation 
with respect to the plus Dirac bracket. 

? See Dirac (1964) and Franke & K~tlnay (1970). 
The name gauge transformation is used through this paper in the sense of Levy- 

Leblond (I 969). 
w Recently K~tlnay (1973) has found the same phenomenon when quantizing the free 

Dirac field. 
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2. Notations and Conventions 

We use the name Bose-like model (respectively Fermi-like model) for 
any classical model which is quantized according to the rule (1.1) with the 
minus sign (respectively the plus sign). 

We consider a system of N degrees of freedom. The coordinates and 
momenta are collectively denoted by q and p: 

q = (ql,q2,...,qN) 

P = (Pl,P2 . . . .  ,PN) (2.1) 

The sum convention is used in any place as well as h = 1. 

Constraints. N1 and Nc denote, respectively, the number of primary 
constraints and the total number of constraints. The constraints themselves, 
primary or secondary, are denoted by &, n = 1, 2, ..., N1, ..., No. They are 
the same for both the symmetric and the skew-symmetric quantization 
problem of a given model. Contrarily, the subset {0_"}, a = 1, 2 . . . . .  N-o, of 
minus second-class constraints is usually different from the subset {0+a}, 
a = 1, 2, ..., N+o, of plus second-class constraints. 

Brackets. The minus (ordinary, skew-symmetric) or plus (symmetric) 
brackets are denoted by curly brackets: 

OF OG OF OG 
{r, G}~ = Oq, Opt TOp, Oq, (2.2) 

Curly brackets with an asterisk: {, }~*, denote Dirac brackets. Square 
brackets are reserved for commutators and anticommutators: [,  ]~. 

Other Notations. The new entities of the theory obtained through a gauge 
transformation are denoted by a tilde. Examples: ff are the new momenta, 

/7 the new Hamiltonian, etc. Correspondingly {, }ff  is the new minus 
Dirac bracket. 

A partial derivative like 0/0q~ will be written sometimes simply as 0i, and 

a = (al ,  a2 , . . . ,  a~,) (2.3) 

3. Gauge-Variance of the Minus Dirae Bracket 
3.1. Short Review of the Canonical Formalism for Constrained Systems 

For the following considerations it will be useful to make here a brief 
review of Dirac's canonical formalism for constrained systems. We shall 
follow closely Dirac's own work. t 

We consider a general classical system whose dynamical properties are 
derived from a Lagrangian L(q,O; t). From the defining relations: 

OL 
Pi - 00 ~ (3.1.1) 

1" See, for example, Dirac (1964). See also Franke & K~tlnay (1970). 
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a certain number of relations between q and p sometimes arise. They are 
called primary constraints and are written as: 

~b" ~ 0 ,  n = l , . . . , N 1  (3.1.2) 

Because of these constraints the ordinary canonical formalism fails. The 
canonical equations must now be written in the form: 

(h = (OH/Opt)~ + um(a(a'n/Opz)q (3.1.3a) 

-fit  = (on/Oqt)p + Um(O(fim/aqi)p (3.1.3b) 

where, as in the ordinary theory, 

H -~ O t P t - L  (3.1.4) 
is the Hamiltonian and 

um(q,(1 . . . .  ; t) ,  m = 1 . . . .  ,N1 (3.1.5) 

are non-canonical variables which, together with q and p, are necessary to 
account for a complete description of the time evolution of the system. 

The primary constraints are usually not the only constraints of the 
problem. Others may appear by eliminating the u's from the consistence 
equations 

O" = (Odp"/Ot) + {O",H}_ + u,,{dp", (am}_ ,,~ O (3.1.6) 

The additional constraints must also satisfy consistence equations like 
equation (3.1.6). The procedure is iterated until no new constraints appear, 
the remaining consistence equations serving to restrict the u's. The addi- 
tional constraints generated this way (called secondary constraints) will 
also be denoted by q~" but now n runs from N~ + 1 to No. As regards the 
skew-symmetric (symmetric) quantization procedure, this whole set of Arc 
constraints is conveniently separated in two distinct subsets: the minus 
(plus) first-class constraints and the minus (plus) second-class constraints. 
Every minus (plus) first-class constraint has a minus (plus) Poisson bracket 
with any other constraint that vanishes at least modulo the constraints them- 
selves. This is not true for the second-class constraints which can always be 
chosen so that the matrices C r, defined by equation (1.3), exist.I" 

3.2. Gauge- Variance 

Let us now consider the changes which occur in the elements of  the 
canonical formalism, sketched above, when the pure gauge transformation 

qi ---~ cTi = qt (3.2.1a) 

Pt -+fit =Pt  + Of/Oqt (3.2.1b) 

t For this we must (eventually) replace the constraints by non-singular linear combina- 
tions of them in such a way that we get as many minus (plus) first-class constraints as 
possible. 
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is performed. H e r e f i s  an arbitrary function of the coordinates and time. 
Under equations (3.2.1) the Lagrangian changes as 

L ~ L = L + df/dt (3.2.2) 

To present in a concise form the changes induced by the gauge transfor- 
mation it is useful to introduce the associated operator Ns, defined by: 

(~r F)(~,fi; t) =- F(r - 0/(r t); t) (3.2.3) 

This operator has the following properties: 

(i) @f is linear (3.2.4a) 

(ii) ~ f  ~o = ~o ~ f  = ~r (3.2.4b) 
(iii) No = 1 (3.2.4c) 

(iv) ~ 7  ~ = ~ _ f  (3.2.4d) 

(v) ~s (F .  G) = ~s (F) .  ~ f (G)  (3.2.4e) 

(vi) (a/Or = ~f(aF/ar - (a2f/a~i aCj)~f(aF/Ofij) (3.2.4f) 

(vii) (a/Offi)(@sF) = ~s(aF/0/~t) (3.2.4g) 

(viii) (O/Ot)(~f F) = ~f (aF/a t )  - (azf/at or ~.(OF/Offj) (3.2.4h) 

It is not difficult to see that the new momenta, Hamiltonian and primary 
constraints may now be written ast 

/~ = ~71p (3.2.5) 

/-7(r t) = (~y H)(r t) - (af/0t)(r t) (3.2.6) 

q~"(~7,/~; t) = (~s  &)(#,/~; t) n = 1, . . . ,  N1 (3.2.7) 

Furthermore, we have also 

H(q,p; t) = (~s  H)(g, ff; t) =/-7(r t) + (~f/Ot)(r t) (3.2.8) 

& ( q , p ; t ) = ( ~ f & ) ( ~ 7 , f f ; t ) = ~ " ( # , p ; t ) ,  n =  l , . . . N 1  (3.2.9) 

Through these last relations equations (3.1.3) may be rewritten in the form: 

~, = (OIT/Ofi,)~ + u,,(O(gm/Ofi,)~ (3.2.10a) 

- f l ,  = (O~qlar + u,,(O(am/~r (3.2.10b) 

which are the new equations of  motion. Equations (3.2.10) show that we 
can take as the new non-canonical variables Om the same as before: 

am(~,~,. . .; t) = u,,(q,O . . . .  ; t )  (3.2.11) 

Finally, due to equation (3.2.9) the consistence equations for the new 
primary constraints are just equations (3.1.6). It follows then that all the 

r There is some ambiguity in the choice of the functional form of the constraints because 
linear combinations of the ~" may also be chosen as new constraints. We are making the 
assumption that the same algebraic manipulations achieved when working with the 
original problem (i.e. that whose Lagrangian is L) are also accomplished after the gauge 
transformation has been performed. This remark is also important in regard to equations 
(3.2.12) and (3.2.14) below. 
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new secondary constraints may be chosen so that they have the form (3.2.7). 
In summary we have: 

( a ( q , p , ) = ( ~ s q S ) ( 0 , p , t ) ,  n = l , .  No (3.2.12) 

The character of the new constraints will be considered now. For this, let 
us note that by virtue of equations (3.2.4f) and (3.2.4g) the following relation 
holds for any F and G: 

~s{F, G}_ = { ~ F ,  ~ f  G}_ (3.2.13) 

This relation expresses the well-known fact that a gauge transformation is 
canonical with respect to the minus Poisson bracket. A moment of reflection 
then shows that if qS" is minus first (second) class then q~= is minus (second) 
class. Then 

O-"(q, f i; t)=(N~O_a)(~,fi;t) ,  a =  1 . . . . .  N-o  (3.2.14) 

and also, by equation (1.3), 

~ab(q, ff; t )  = ( ~ $  Cab)(~,fi; t)  (3.2.15) 

At this point an important difference between the symmetric and the 
skew-symmetric cases arise. This difference lies in the fact that a relation 
like (3.2.13) is not valid in general for the plus Poisson bracket because a 
gauge transformation is not generally canonical with respect to this bracket. 
Thus, in a general problem, not only is there a change in the functional form 
of the constraints under a gauge transformation but also the subset of 
irreducible plus second-class constraints may be altered. This fact strongly 
suggests that in most cases there will be a radical change of the plus Dirac 
bracket relations (and consequently of the anticommutator algebra derived 
from them through the rule (1.1)) after performing a gauge transformation.? 

The validity of relation (3.2.13) permits one to obtain a simple closed 
formula for the gauge-variance of the minus Dirac bracket. The same seems 
difficult to find in general for the plus Dirac bracket. To find that formula, 
note that the new Dirac bracket is given by : 

{F, G)_ 7' -- {F, G)_ - (F, 0_s)_ Cab(/~_ b, G)_ (3.2.16) 

Applying now N71 to both sides of (3.2.16) and using equations (3.2.4a), 
(3.2.4d), (3.2.4e), (3.2.13), (3.2.14) and (3.2.15) we arrive at: 

~}I{F, G}_ "~ = {~Tr 1 F, ~7  ~ G}_ - (~7  ~ F, 0_4}_ Cab{O_ b, ~7~G}_ 
(3.2.17) 

or, in a concise form, 

(F, G}_ g = ~ s ( ~ 7  ~ F, ~7  ~ G}_* (3.2.18) 

This formula is the general relation we looked for. It expresses the gauge- 
variance of the functional form of the minus Dirac bracket.:~ 

? This is just the kind of problem we have found in two previous works where classical 
analogues of Fermi systems were considered. See K~ilnay & Ruggeri (1972) and K~lnay 
(1973). 

:~ A formula similar to (3.2.18) may be found for the variance of the Dirac bracket under 
any transformation which is canonical with respect to the minus Poisson bracket. 
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4. Quantization 

Let us now comment on the implications of relation (3.2.18) for the 
quantization rule of constrained Bose-like systems. As is known, the rule 
(1.1), as well as the ordinary quantization rule (1.4), is consistent if it is used 
only to find the commutation relations obeyed by the coordinates and 
momenta of the quantized system. These operators correspond to the 
canonical variables of the classical system, thus we only need to consider 
here their minus brackets. 

Let us call 

co i  = q i ,  �9 � 9  co/v = q/v,  w / v + i  = P l ,  �9 � 9  co2iv =P/v, 

and denote 
K=e(co ) = {co=, coa}_*(w) 

= 

Let (O be an ordering prescription used when quantizing: 

K B( co ) -+ e) co 

e,) -+ r &a( O op) 

co = ( c o l  . . . . .  o~2/v)  

(4.1) 

(4.2a) 
(4.2b) 

(4.3a) 
(4.3b) 

(The quantization must be done within the same theory in order to compare 
the quantization of the systems whose Lagrangians are L and L, so that 
must be the same for both.) 

The quantization rule for a system governed by L is 

[e)=,op, coa,op]- = iOK=e(coop) (4.4a) 

and the one for the system governed by L is 

[(5=,op, (SB,op]- = i~)R~e(rSo~) (4.4b) 

Usually two systems whose Lagrangians differ by a time derivative, as in 
equation (3.2.2), are considered as physically equivalent. In order to be 
able to question this assumption we shall temporarily admit it. We shall look 
for the consequences of the following working hypothesis: the quantum 
rules (4.4a) and (4.4b) stand for the same physical system. (We do not assume 
that they are written within the same representation.) The phase-space 
frame whose coordinates are represented by co is then equivalent to the 
frame whose coordinates are (5, so that an unitary transformation Uop 
exists such that: 

~op = Uop coop Uo~ (4.5) 

It follows then from equation (4.4b) that 

[co~,op, C%,oF]_ = i0g~a(coop) (4.6) 

Comparing equation (4.6) with equation (4.4a) and going to the classical 
limit (where 0 becomes irrelevant) we are led to 

g=a(z) = K=a(z ) for all z and c~, fl = 1 . . . . .  2N (4.7) 
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On the other hand, the function/~, whose form is given by equation (4.2b), 
can be taken at any variables whatever. Choosing the 09 variables we can 
write 

g~,p(co) = {~,,, c%}fi(~) (4.8) 
and then from equations (4.7), (4.2a) and (4.8) we have 

{co,, coB}fi(co) = {co~, c%}_*(co) (4.9) 

We can now take into account equation (3.2.18) written in the co variables, 
for F = co, and G = co B to find 

~ { ~ 1  co~, ~71 coB}_* = {co,, coB}_* (4.10a) 

or what is the same 

~Tl{co~, coB}-* = {~71 co,, ~71 coB}-* (4.10b) 

We then see, as couM be expected, that in order that the gauge transformation 
induce a mere change of representation at the quantum level, it must be canoni- 
cal with respect to the minus Dirac bracket. To convince ourselves that this is 
not true in general let us consider an infinitesimal gauge transformation: 
f ( q ; t ) = e / ( q ; t )  where e is an infinitesimal parameter. From equation 
(3.2.3) we find 

. .~f  = 1 + e(Ok/) 0---~ + 0(~ 2) (4.11) 

which, when replaced in equation (4.10b), leads us to: 

a#a{co,, coB}-* /~p~ = {O#)(acojap~), coB}-* + {co,, (ak/) acoB/ap~}_* 
(4.12) 

or, in explicit form, 

(Ok/)(O/Opk){q,, q j}_* = 0 (4.13a) 

(Ok/)(O/Opk){q~,pj}-* = {q~, 0j/}_* (4.13b) 

(Okf)(O/Opk){p~,pj}-* = {O~[,pj}_* + {p,, 0J}_* (4.13C) 

But relations (4.13) are not generally satisfied, as can be easily shown by 
considering examples as the one worked out below. We are then led to 
eonelude that i f  Dirac' s quantization rule (upper sign of (1.1)) for eonstrained 
systems are right, then the previous working hypothesis was wrong so that: 
two quantum systems whose elassieal Lagrangians differ by a time derivative 
may not be physieally equivalent. 

Example. As a simple (and rather academic) example of the general 
failure of (4.13) consider the two-dimensional system whose Lagrangian is: 

L = (1/2)(2 -2 0~2 _ q2) q2 (4.14) 
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), ~ 0 is a parameter. The evolution equations derived from (4,14) have the 
solution (where o" = • 

ql(t) = qJ(0) exp (tr2t) (4.15a) 

q2(t ) = q2"(0) exp (-2a~.t) (4.15b) 

p~(t) = tr2 -~ q~'(0) q2~(0) exp (-a2t)  (4.15c) 

p2(t) = 0 (4.15d) 

It is elementary to show that in this example there are only two con- 
straints: 

01 = P 2  ~ 0 (4.16a) 
and 

0 2 = ( , ~ 2 p 1 2 / q 2 2 )  _ q2  ~ 0 (4.16b) 

They give rise to Dirac bracket relations as e.g. 

{ql, q2}-* = (q2/P~) (4.17) 

From this last relation we see that a n y / t h a t  depends on qj violates 
condition (4.13a) so that it is proved that the quantization of this model 
system is altered by most gauge transformations. Moreover, in this simple 
case it is seen directly from equation (4.17) that adding to the Lagrangian 
the particular time derivative q~q~ the value of(ql,q2}-* changes. We remark 
that this happens in spite of the fact that neither q~ nor q: are changed by 
pure gauge transformations. 

5. Summary 

We have devoted this work to analyze the gauge-variance of the minus 
Dirac bracket and its relevance to the quantization rule for Bose-like 
systems. We have seen that the variance is entirely due to the change in the 
functional form of the constraints. For Fermi-like systems the situation is 
probably worse because the subset of second-class constraints may also 
be altered. 

As a result of this work the formal structure of a quantized system may be 
altered by performing a gauge transformation, because these transforma- 
tions are not generally canonical with respect to the Dirac brackets. As 
these brackets are involved in the quantization rules for constrained systems 
we have the following alternative: (a) as customarily implied the change of 
the Lagrangian by a total time derivative is to be considered as devoid of any 
physical significance, consequently the quantization rule for sufficiently 
generally constrained systems must be modified; or (b) the quantization 
scheme holds good but a physical difference may exist between two con- 

t We suppose that  theq 's  are non-identically zero functions of the time with continuous 
first derivatives. 
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strained systems whose classical Lagrangians L and/~ are related by a 
gauge transformation: 

L =  L + df/dt 

References 

Dirac, P. A. M. (1950). Canadian Journal of  Mathematics, 2, 129. 
Dirac, P. A. M. (1951). Canadian Journal of  Mathematics, 3, 1. 
Dirac, P. A. M. (1958). Proceedings of  the Royal Society (London), Series A, 246, 326. 
Dirac, P. A. M. (1964). Lectures on Quantum Mechanics, Belfer Graduate School of 

Sciences Monograph Series No. 2. Yeshiva University, New York. 
Franke, W. H. and K~flnay, A. J. (1970). Journal of  Mathematical Physies, 11, 1729. 
K~ilnay, A. J. and Ruggeri, G. J. (1972). International Journal of  Theoretical Physics, 

Vol. 6, No. 3, p. 167. 
K~ilnay, A. J. (1973). International Journal ofTheoreticalPhysics, Vol. 7, No. 2, p. 119. 
Levy-Leblond, J. M. (1969). Communications in MathematicaIPhysics, 12, 64. 


